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Some new results in the theory of synchronous parallel computation indicate 
there may be fundamentally unavoidable limitations to computing in certain 
kinds of large computational problems arising naturally in science and engineer- 
ing. These limitations are in the naturd of uncontrolled growth (discontinuous 
jumps) in computation times under fixed programming schemes, and arise for 
computations allowing arbitrary (uniform) inputs over F n for sufficiently large 
n, where F is a finite field. Instances of such discontinuity may appear, for 
example, in very-large-scale Monte Carlo simulations, such as those being 
contemplated for carrying out quantum chromodynamics (QCD) computations 
on lattices of substantially larger size than is now practicable. In this case, the 
QCD simulation may encounter abnormally (and unexplained) long run times 
on particular internally generated updates, resulting in distortion among time- 
weighted runs. The mechanism of these updates is believed to satisfy our 
necessary assumption of fixed encodings over uniform inputs. 

1. I N T R O D U C T I O N  

Conven t iona l  computa t ion  theory pr imari ly  involves possibilit ies,  not  
probabil i t ies .  Certainly a great many  problems are known  to be much  easier 
on  average than  in the worst case. It is the thesis of this paper  that,  on  the 
contrary,  for certain kinds of physical processes, the densi ty of i r reducibly  
(uncont ro l lab ly)  complex computa t ions  arising from quest ions about  these 
processes is very large. In  a recent paper  (Wolfram, 1985) it has been  
suggested that  such computa t iona l  i rreducibil i ty occurs whenever  a physical  
system can act as a computer ,  and  that computa t iona l  reducibi l i ty may well 
be the except ion rather  than  the rule. That  is, most  physical  quest ions may 

be answerable  only  through uncont ro l lab le  amounts  of  computa t ion .  
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Similarly, it has been argued (Feynman, 1982) that quantum mechanics 
cannot be simulated by locally interconnected computers when size-growth 
is controlled in such a way that the number of computer elements necessary 
to simulate a large physical system be proportional to the space-time volume 
of the physical system. Our results seem to imply that this argument should 
hold for any (fixed) computable relation between the number of computer 
elements and the space-time volume. 

Using a source encoding result (Fine, 1975) we show that there exists 
an infinite sequence of sets M. of binary functions such that each M. 
contains at least one function f not in C, where C is the set of reasonably 
programmable binary functions in the sense that there exists a program P 
which yields an approximation f '  ~ 6( f )  to f, that P run in time no longer 
than ~-, and that IPI < y[K~o(f)] for all preassigned recursive % 7, and 6, y 
increasing and ~ such that for some e < 1 and each binary function g e M,, 
6(g) contains no more than 2 ~lgl binary functions. K+ ( f )  is the Kolmogorov 
measure of the quantity of information contained in the function f 

Next we relate lower bounds on the VLSI complexity'of approximately 
computing certain uniform sets of finite binary functions f directly to their 
information content Kq,(f). This suggests a hierarchy theorem in which we 
show the existence of infinite sequences of finite functions f of increasing 
degreee of amodularity which cannot be reasonably approximated to within 
6(f) by modular (VLSI-efficient) functions. We further show that if all 
sufficiently large M, contain at least one function f not in C, then every 
(reasonably accurate) computation allowing arbitrary inputs over E n~-"0 is 
inherently amodular. A result (Helm and Young, 197t; Constable and 
Hartmanis, 1971; Meyer and Fischer, 1972) on the size of programs admit- 
ting speedups provides convincing evidence that practically all large compu- 
tations are amodular. 

In general, one is interested in finding an efficient algorithm for solving 
a problem, where the notion of efficiency may involve a variety of (perhaps 
yet unknown) computing resources. Here though, we are concerned with 
the single resource time. The time requirements of an algorithm are usually 
expressed in terms of a single variable, the size of a problem instance, which 
is intended to reflect the amount of input data needed to describe the 
instance. This is intuitively appealing because one would expect the relative 
difficulty of problem instances to vary roughly with their size. The size of 
a problem instance is often measured in an informal way, so if time 
requirements are to be compared in a precise way, care must be taken to 
define instance size in a uniform manner. 

The description of a problem instance provided as input to a computer 
can be viewed as a single finite string of symbols, chosen from a finite fixed 
alphabet. Although there are many different ways in which instances of a 
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given problem might be described, it is assumed that each problem has 
associated with it a fixed encoding scheme E which maps problem instances 
into the strings describing them. The input length for an instance I of a 
problem ~- is defined to be the number of symbols n in the description 
E(I) obtained from the encoding scheme for ~r, and it is this number n 
that is used as the formal measure of instance size. 

The time complexity for an algorithm, defined as the largest amount 
of time needed by the algorithm to solve for each input length IE(I)I an 
instance I of that length, thus depends upon the particular encoding scheme 
chosen. However, the standard encoding schemes used in practice always 
seem to differ at most polynomially from one another, so that any algorithm 
having polynomial time complexity under one of these encodings will have 
tiolynomial complexity under all the others. As it is difficult to imagine a n  
encoding scheme for a naturally occurring problem that differs more than 
polynomially from the standard ones, there has been general agreement as 
to what constitutes a reasonable encoding scheme. Although what is meant 
by reasonable cannot be completely (satisfactorily) formalized, the generally 
accepted meaning includes the notions of conciseness and decodability. 
The intent of conciseness is that instances of a problem should be described 
with the natural brevity that would be used in actually specifying those 
instances for a computer, without any unnatural padding of the input, as 
such padding might expand the input length so drastically that an exponen- 
tial time algorithm would be artificially converted to an algorithm with only 
polynomial complexity. The intent of decodability is that, given any par- 
ticular component of an arbitrary instance, a polynomial time algorithm 
can be specified for decoding a description of that component from any 
given encoded instance. In other words, for a problem to be considered 
realistically defined (encoded), the solution which satisfies the problem 
parameter values specified in each instance must itself not be so extensive 
that it cannot be described with an expression having length bounded by 
a polynomial function of  the input length. 

2. SOURCE ENCODING 

The concern an information theory with only average program (code- 
word) length has obscured the problem of the efficient coding of individual 
message sequences. A theorem due to T. Fine (1975) demonstrates that any 
code that can be realistically decoded must, for many sources, assign 
incredibly long (exceeding y[K+]) programs P to some (not very many) 
messages relative to the minimum possible (incompressible) codeword 
length K,.  This limitation seems to be fundamentally unavoidable even 
under very weak assumptions concerning the definition of a running time 
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bound, the concept of a neighborhood set of a sequence, and the degree 7 
to which the lerigth of a program approaches its minimal value K~,. The 
concern with individual messages is formulated and treated within the 
framework of algorithmic information theory, rather than with respect to 
sources for which a relative frequency characterization of uncertainty is 
assumed. 

The ability to compress binary data in the form of a binary sequence, 
for example, requires a compression (encoding) function E and a recon- 
struction (decoding) function ~O. If IS [ denotes the length of the data sequence 
S, it is hoped that [E(S) I tends to be less than IS[ at least for those sequences 
in a finite message source M. The fundamental difficulty of data compression 
dealt with concerns ~0 rather than E, the properties of the decoder rather 
than those of the encoder. The nature of the conflict is such that for many 
message sets it is practically impossible to decode some efficiently encoded 
sequences (incompressible or nearly incompressible input programs) from 
either probabilistic, nonprobabilistic, or unknown sources. There is a similar 
conflict between the degree to which a sequence is compressed, and the 
difficulty of doing so. Details of this argument are analogous to the first 
problem. Furthermore, the results remain valid even when the coding 
requirements are relaxed so that the decoder need reconstruct only a 
reasonable approximation to the encoded sequence. 

Specifically, if z(S) is the running-time bound on computational effort 
of decoder (receiver-computer) ~O accepting codeword (program) P for 
message S, and y[K, (S)] is the upper bound to acceptable codeword length 
IPI when the shortest codeword for S has length K~(S), then for many 
message sources M there exist messages S~ M such that (t)  if encoder 
satisfies y, then "decoder violates ~'; (2) if decoder satisfies ~', then encoder 
violates y. These conclusions seem to be fundamentally unavoidable, and 
remain valid even when the decoder is allowed to reconstruct only an 
approximation S' in a neighborhood 6(S) of S. Compatibility of these 
results with those of information theory is that detailed properties of coding 
systems for individual messages, and not ensemble average properties, are 
analyzed. In a sense, concepts of Kolmogorov (Kolmogorov, 1968; Chaitin, 
1975) increase resolving power of information theory for looking at 
individual sequences, and thus reveal obstacles to uniformly good coding 
systems. 

The formalization of program efficiency is effected through a measure 
of information introduced by Kolmogorov (Kolmogorov, 1965). Let s denote 
a finite binary string and let x denote an infinite binary sequence. The first 
n bits of x are written as x ", x, [sometimes written x(n)]  is the nth bit of 
x and l(s) is the length of s. We also write x" to denote an arbitrary finite 
string of length n. 
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Definition. A programming language q~ is a partial recursive (p.r.) 
function on the finite strings, 

q~:{0, 1}*-~ {0, 1}* 

Definition. p is a r program for s i t t  ~p(p)= s. 

Intuitively, programming languages (computers) are thought of as 
mappings from programs to their outputs. The value ~p(p) is the binary 
string output by the computer p when it is given the program p. If  q~(p) is 
undefined, this means that running the program p on ~p produces an 
unending computation with no output. 

Definition. The Kolmogorov information in x n relative to the program- 
ming language q is 

K~(x n) = min{l(p): 3p p (p )  = x n } 

= co otherwise 

Definition. ~ is a universal programming language iff 

Vq~3cVs[ K~ (s) <- K~ (s) + e] 

The existence of universal programming languages is well known 
(Rogers, 1967). Such languages 0 have the property that for any program- 
ming language ~, there is a constant c (which depends on q~) such that the 
shortest programs relative to 0 never exceed the shortest programs relative 
to r by more than c, independent of the string s being programmed. Thus 

is as succinct a relative description scheme as any. Therefore we define 
the Kolmogorov information measure simply as K~. Kolmogorov informa- 
tion content is often equivalently referred to as algorithmic information 
content, program-size complexity, Kolmogorov complexity, or descriptive 
complexity, and inputs (programs) p for which Kq,(p)>-[p [ are called 
incompressible. 

It has also been found useful to study programs which are given, as a 
separate input, the length of the desired output, where no charge is made 
for the length of this second input. 

Definition. The Kolmogorov conditional information in x" is 

Ko(x'[n) = min{/(p): 3p~(p, n) = x"} 

= co otherwise 

The two measures express a slightly different quality of the sequence 
x" in assessing its information content. The quantity K~(x") gives the 
minimum length of programs for x" which must contain, in addition to the 
distribution of l 's and 0's in x", also information concerning the length n. 
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The integer n can generally be expected to use about length log2 n of the 
binary program p for x n. On the other hand, the quantity K+(x"[n) gives 
the minimum length of a program which need not contain information on 
the length n, but which only determines the distribution of l ' s  and O's in 
x n. This distinction is dramatic at the low-information end of the scale 
where the information needed to determine the distribution is less than 
log2 n. 

A more general definition of information conditioned on an arbitrary 
amount  of  a priori information can be formulated as follows: 

Definition. The conditional (Kolmogorov) information Ko(s I I) of a 
binary sequence s given information I represented as a finite binary sequence 
is given by 

K~(s I I )  = rain{/(p): 3p~O(p, I )  -- s} 

= oe otherwise 

Theorem 1 (Fine, 1975). I f  ~-, y, and ~ are recursive functions, y 
increasing and 3 such that for some e < 1 each sequence S has a neighbor- 
hood 6(S) containing no more than 2 ~lsl sequences, then 

( ] lo ) (V/>  Io)(3~(1) ~ Miv(1)/(l_~)l)sC(l)c 

where M~ ={S:lSl  = n}; txl is the smallest integer>-x; C = 
{S: (3P)  4,(P) ~ 8(S), p~,(P) < r(S) ,  IPI < v[K~ (S)]} is the set of  reasonably 
compressible source sequences in the sense that P yield a reasonable 
approximation S'~ 8(S) to S, that P run in time no longer than r, and that 
it is moderately efficient in that for some preassigned function y, [PI < Y[ K~], 
where K~, is the length of the most efficient possible codeword; 4' is a p.r. 
function which can be thought of as any one of countably infinitely many 
universal Turing machines using the encoding function E;  p~ is the running 
time of P on 4' and is defined if[ ~ halts. 

The above result thus shows that there is an infinite sequence 
{MI,),(k)ll_el } such that each Mlv(k)ll_el contains at least one sequence ~:(k) 
not in C. This conclusion can be extended to other sequences of  subsets of  
{0, 1}*, but it is not known whether it extends to all sufficiently large M,. 
[Based on program-size vs. speedup results (Helm and Young, 1971; 
Constable and Hartmanis,  1971; Meyer and Fischer, 1972) for certain 
functions f, we conjecture it does extend to all sufficiently large message 
sources Mn, but the specification of n would be noneffective.] 

3. VLSI C O M P U T A T I O N  

There is a close connection between the theory of information trans- 
mission over a channel and complexity of  computing. The above result can 
be extended to binary functions which leads to the following theorem. 
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Definition. Mn ={f :  IJ] = n} and C ={f :  (3P)~b(P)c 6(f), po(P)< 
r ( f ) ,  1PI < ~'[K+ (f)]} is the set of reasonably programmable binary functions 
in the sense that there exists a program P which yields an approximation 
f ' c  6 ( f )  to f that P run in time no longer than 7, and that Iel < z , [ / ~ ( / ) l  
for all preassigned recursive .r, 3', and 8, 3' increasing, and 6 such that for 
some e < 1 and each binary function g ~ Mn, 6(g) contains no more than 
2 ~lgl binary functions. 

Theorem 2. There is an infinite sequence of sets M. of binary functions 
such that each M. contains at least one function f not in C. 

Proof The table of an arbitrary binary function f :  ~logn _~ ~m, where 
E = {0, 1}, can be regarded as a binary sequence S ~ Mmn for some message 
source Mmn by concatenating the n rows of length rn comprising the table. 
The encoding E(S) is then a program P for computing f on (universal 
Turing machine) q,. By the previous theorem there is an infinite sequence 
{ML~(k)/I_~ I} such that each Ml3,(k)/l_~] contains at least one binary function 
~ : (k)=f  not in C. �9 

(The restriction to binary functions in the theorem is clearly 
unnecessary, as any finite function of natural numbers into natural numbers 
can be transformed into an equivalent function f over E*.) 

So far, we have established (by Theorem 2) that uncontrolled (discon- 
tinuous) growth in the program length or computation time is unavoidable 
when considering finite uniform computations carried out on a sequential 
machine. Furthermore, uncontrolled growth is unavoidable in approximat- 
ing such computations. The question naturally arises if we cannot somehow 
avoid these difficulties through parallelism in computing. That is, could the 
bottleneck between memory and cpu in sequential computers cause the 
discontinuous jumps in complexity with problem size? 

In order to compute a family of functions in which the inputs and 
outputs are distributed among a number of processors, information must 
in general be transferred between the processors. The role of such internal 
communication requirements in contributing to the inherent complexity of 
computational problems is still poorly understood. In distributed systems 
it can be expensive both in time and hardware to send information between 
processors, and in some computations the processors spend significantly 
more time waiting for information to be transferred than in performing 
actual computation. In VLSI chips the computation is distributed over the 
chip, and the various processing elements must communicate via wires. 
These wires generally occupy more space than the processors themselves, 
and can therefore be a more significant factor in determining cost and 
performance (Mead and Rem, 1979). 
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The information transfer required in a distributed computation is 
defined to be the smallest number  I such that, for any values of  the inputs, 
the computat ion can be accomplished with a total of  at most I units of  
information transferred between the processors. In general, the information 
transfer can be regarded as a measure of  the inherent modulari ty of  the 
function being computed. Finding a configuration for which the inputs or 
outputs are evenly distributed, but which requires small information transfer, 
is a way of modularizing the computation. I f  this is not possible, we say 
that the function is inherently amodular. In other words, any partitioning 
of the computational  process demands highly interacting parts. This (infor- 
mation transfer) amodulari ty leads to an area-time tradeoff for VLSI circuits. 

The basic model of  VLSI computation allows great generality. It allows 
features which certainly are not even contemplated in the near future. There 
are three main components:  the boolean function f which is to be computed, 
a synchronous circuit C that computes f, and a VLSI layout V that realizes 
C. We assume that C is a network of wires attached to each other and to 
gates. The gates of  C can be "and,"  "or ,"  or "not"  gates of arbitrary fan-in 
and fan-out. Such a circuit, which may have feedback, computes f provided 
there is an input-output  schedule that describes how the inputs and outputs 
o f f  are mapped  onto the input and output wires of  C. It is assumed that 
each input arrives once and each output leaves once. (The motivation for 
this is that otherwise we would be allowing the circuit "free" memory.) 

Definition (Lipton and Sedgewick, 1981). A VLSI layout V is a 
(A, Izl, tz2) layout of the sequential circuit C if there is a map that assigns 
to each gate g (wire w) of  C a closed connected region of the plane g* 
(w*) so that (1) if w is an input or output wire of  gate g, then g* intersects 
w*; and (2) for each A x A square S of the plane, (a) at most tzl gates g 
map to regions g* that intersect S, and (b) at most /~2 wires w map to 
regions w* that intersect S. 

It is further assumed that all of  the g* and w* lie in a convex region 
R, the region of the layout. The layout area A for a function f is defined 
as the area of  the smallest region R containing a VLSI layout V of a network 
C that computes f in time T. No assumption is made about the location 
of circuit inputs or outputs or how they are assigned to gates, but we do 
require that circuits use all their inputs. Condition (1) simply forces electrical 
connections to map to topological connections (the converse is not true 
because multiple layers are allowed). Condition (2) is a direct result of the 
limits of VLSI fabrication. It ensures that any such S (e.g., a transistor) can 
only "see"  a fixed number  of gates and wires, and therefore limits the 
number of  layers that can be used at the same point to tz~ + ~2- 
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Theorem 3. There is an infinite sequence of sets M, of binary functions 
such that each M, contains at least one functionf which cannot be computed 
or approximated within 6(f) by any VLSI circuit in less than AT 2 
(equivalently A2T) > l)[h(f)]  or AT 2 (equivalently A2T) > l)[h(K+)], for 
all recursive h, and recursive ~ such that for some e < 1 and each binary 
function g c M,, 8(g) contains no more than 2 dgl binary functions. 

Proof By Theorem 2 we know there exists at least one f not in C for 
each M,. Thus either f violates the allowed running time r on ~O, or it 
violates the allowed program-size bound 7[K~] f o r f  on ~. If r is exceeded 
for any recursive z, then since a r(n) time bounded Turing machine simu- 
lated on n bits by a boolean circuit requires O[r(n)log r(n)] gates 
(Pippenger and Fischer, 1979; Schnorr, 1976) and any planar circuit requires 
at least this number of gates, the result follows (Lipton and Sedgewick, 
1981; Savage, 1981) with h = [r log r]. If on the other hand y is exceeded 
so that any program for f takes more than y[K,(f)] tape squares to read 
into storage (for example, on an off-line machine with a two-way read only 
input tape), more than y[K~(f)] time steps on ~ are required just to read 
the input tape. This leads to precisely the same argument as before, and 
thus the result is established. Note that the entire input tape must be read 
in the computation off,  since by Theorem 2 the necessary length [PI of any 
program for f exceeds 7[K,  (f)] if running time is to remain less than ~-(f), 
and any lesser input in computingf will violate r. I fa  model of computation 
is assumed whereby the input is already on a working tape, either the above 
argument or one relating Turing machine space polynomially to planar 
circuit depth (Borodin, 1977) leads to the stated result. (A result requiring 
the layout area A of any VLSI circuit performing binary multiplication be 
proportional to the total number of bits input to the chip appears in the 
literature (Brent and Kung, 1980), and is extended (Baudet, 1981) to 
functions corresponding roughly to shifting or transitive operations which 
depend on all their inputs.) [] 

The connection pointed out earlier between on-chip information flow 
and inherent modularity of functions ignores the problem of input, and 
instead assumes each processor already has its roughly equally divided 
share of inputs in memory. Given enough input, no interaction among the 
processors would in theory be required, regardless of the function being 
computed. Account for program length must therefore be taken in defining 
the concept of modularity. Intuitively, we think of a computation being 
modular if the total time it takes can be arbitrarily reduced by partitioning 
among a large enough number of processors. Total time in practice obviously 
includes the time required to transfer program bits into the various processor 
memories. Thus modularity relates to all processor interactions, not just to 
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on-chip flows. Using this global notion of processor interaction in measuring 
inherent modularity of computations, we can show that finite functions 
abound that are highly amodular. Moreover, such functions cannot be 
reasonably approximated by modular functions. 

Definition. If a function (computation) f requires a program 
inefficiency (redundancy) 3', i.e., 

IPI-- T[Kq,(f)] 

for f to run within time z(IP[) on ~, then f has amodularity degree 
h--max(T, r), the greater growth rate. If h is polynomial or less, f is 
modular. Otherwise f is amodular. 

Theorem 4 (Hierarchy theorem). There is an infinite sequence of finite 
functions f of arbitrarily increasing degree of amodularity which cannot be 
approximated to within reasonable ~ (f) by functions f '  having an amodular- 
ity degree lower in the sequence. 

Proof. Theorem 2 establishes the existence of infinite sequences of 
finite functions that take longer than r time to compute on qJ, or require 
input longer than T(K~). Such sequences exist for each pair (z, 3'), where 
z is recursive and 3' is recursive increasing. If tp satisfies r, then the input 
violates 7. The polynomial relation between Turing machine space and 
circuit depth (Borodin, 1977) thus requires chip interaction> 7(K~) to 
within a polynomial factor. The degree of amodularity therefore grows as 
3/if z is small. If on the other hand the input satisfies 3', then ~ violates z. 
For complexity bounds ~(log n) on input of length n, it is well known 
(Dymond and Cook, 1980) that sequential space and reversal are both 
~(log ~-), and that reversal is polynomially related to aggregate depth 
(parallel time on combinational circuits which can reuse their gates). Thus 
either the space-circuit depth or reversal-aggregate depth relation requires 
chip interaction > log z within a polynomial factor. For the pair (% 3') we 
then have at least one (actually many) infinite sequence of functions f 
having degree of amodularity greater than 3/or log z (to within a polynomial 
factor). By successively choosing faster growing z and T we obtain infinite 
sequences of functions with arbitrarily increasing degrees of amodularity. 
As ~ is required to compute (in Theorem 2) only an approximation f '  to 
f, subject to constraints on the reasonableness of the approximation, we 
can replace each f by any f '  within the 8 neighborhood obtaining f '  
sequences instead o f f  sequences. Clearly f '  has the same degree of amodu- 
larity as f, since the running time for any such f '  approximating f exceeds 
~" or tp requires more than T(K~,) bits to executef', completing the proof. �9 

Actually, the situation may be much worse. Theorem 4 establishes only 
the sparse existence of functions which are increasingly amodular, namely 
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one such f for approximately each y(n) with n-> no. Thus the distance 
between s and s can be very large, and in fact becomes arbitrarily 
large with ever increasing y. The high-density existence of such functions, 
say one for each y(no)+ k, k = 0, 1 , . . .  would seem to have serious implica- 
tions for very large-scale computations, e.g., solving weather prediction 
equations on large uniform data sets. The next two results provide conditions 
for a high-density hierarchy theorem. 

Corollary 1. I f  all sufficiently large Mn contain at least one function f 
not in C, then every (reasonably accurate) computation allowing arbitrary 
inputs over s is inherently amodular. 

Proof I f  the conclusion of Theorem 2 extends to all sufficiently large 
M,,  then by the above proof  3 no such that there is at least one f satisfying 
Theorem 4 for each integer n -> no. A computat ion which allows all inputs 
over s includes such a n f  as a partial computation if n -> no, and is therefore 
itself amodular  even when only approximated to within 6. �9 

There is strong evidence that the condition of Corollary 1 holds. Note 
that Theorem 2 implies that in order to stay within any given recursive 
running time bound r, the program P for computing some f in Mn must 
grow more rapidly as a function of K+(f) than any computable y. And 
since (Fine, 1975) K~(f')>y(lo), where n is the smallest integer_> 
y(lo)/1- e, ]P] must grow faster than any computable function of n. Now 
as we decrease r, the function f begins to look like a function that has an 
almost everywhere (a.e.) speedup at the expense of an ever larger program. 
Moreover, the faster program cannot be effectively determined from the 
given program, nor can we effectively compute from which point on the 
speedup started. 

Definition. Let q~i be the ith partial recursive function of one variable 
in a standard Godel numbering (Rogers, 1967) of  p.r. functions. A family 
qbo, ~1, �9 �9 �9 of  functions of  one variable is called a Blum measure (Blum, 
1967) on computat ion providing (1) domain (~ i )=  domain (~i) ,  and (2) 
the predicate [qbi(x ) = m] is recursive in i, x, and m. 

Definition. A p.r. function ~ is speedable if for all i such that ~oi = 
and for all recursive functions h there exists j such that ~j = q~, and 

[qb,(x) > h(x, ~j (x ) ) ]  a.e. 

Furthermore, q~ is effectively speedable if j can be recursively computed 
from i and an index for h. 

Intuitively, if ~ is speedable then for every program i for computing 
q~ and every recursive function h there is another program j for q~ which 
is an h speedup of the first on all but a finite number  of  inputs x, where j 
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is an h speedup of i on argument x if 

r  > h(x, ~,j(x)) 

The question whether for a function f with h speedup there must exist 
a recursive function which bounds the size of program necessary to effect 
the speedup was originally posed by Blum (Blum, 1971). A negative answer 
for effective operators slightly larger than h appears in the literature (Helm 
and Young, 1971), where it is shown that functions f exist which have the 
property that if we are given any program P for computing the function 
and want to pass to a program P'  which computes the function much more 
efficiently, then we can only do so at the expense of obtaining a much larger 
program. In fact, the function which describes the necessary increase in the 
size of the more efficient program P' must grow more rapidly than any 
recursive function. The functions f have speedup, but not only can one not 
effectively find the programs P'  which admit the speedup, even if one could, 
their complexity must increase in such a way that their size becomes totally 
uncontrolled. It is thus evident that the speedup property is related to 
Theorem 2 in the sense that certain speedable functions exhibit the discon- 
tinuous trade between their program-size and computation time predicted 
by the theorem. That the programs for such functions are noneffective is 
of course already implied by Theorem 2. 

Such behavior is shown to arise for certain operator speedups R(rj)- 
( n )<~ i ( n )  a.e. (ordinary speedups by recursive functions h(n, r j ( n ) ) <  
ri(n) a.e. are a restricted form of operator) and is conjectured to hold for 
all sufficiently large operators on the basis that it should be more difficult 
to bound the size of programs effecting large speedups than those bounding 
smaller speedups. A slightly stronger result appears (Constable and 
Hartmanis, 1971; Meyer and Fischer, 1972), the question of extension to all 
total effective operators R remaining open. 

Theorem 5. If the Helm-Young (1971) theorem extends to all 
sufficiently large operators R, then Theorem 2 extends to all sufficiently 
large M,. 

Proof Helm-Young prove that for every recursive function h there is 
an effective operator R only slightly larger than h, and a total recursive 
function f which has R speedup 

R(~))(n)< ~'i(n) 

but for which the size of the program necessary to effect the speedup 
increases more rapidly than any recursive bound. If their result holds for 
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any operator R sufficiently large that 

R('r)(n)>-h(n+ l) 

then f requires such programs for all running times ~--< ~.. If the size of a 
program necessary to effect an R speedup cannot be effectively bounded 
for some R-speedable f ~  Mno~, then Vy:qno such that its initial segments 
f .  of length n - no require programs P. of size [P.[ >y [K~( f . ) ] ,  where ~O 
computes f therefore f .  within time z~(n), and Theorem 2 holds for all 
r -> z~ and all sufficiently large M.. If this behavior arises for all sufficiently 
large R, then Theorem 2 holds additionally for all T_< ~3 and sufficiently 
large M.. ID 

4. DISCUSSION 

In view of the fact that most simple (noncomposite) functions already 
have been shown to have time-efficient layouts only when wire area is nearly 
as large as the chip, it would not have been completely unexpected to find 
that running time (or VLSI circuit area) for arbitrary composite functions 
would exceed polynomial or simple exponential limits. For example, it is 
shown (Lipton and Sedgewick, 1981) that certain n-input functions which 
are easy to compute become difficult under union or composition if each 
input arrives once and each output leaves once. If inputs are allowed to 
arrive multiple times (i.e., at many different times during the computation), 
this result does not hold, but if we do not allow free boundary (off chip) 
memory, the on-chip storage area will correspondingly increase. However, 
the probable abundance of well-defined functions which exceed any recur- 
sive bound on the area-time product is unexpected. 

Blum (1971) gave an axiomatic characterization of some of the proper- 
ties which should be possessed by a measure of computational complexity 
and established the existence of speedable functions--computable functions 
which fail to possess optimal programs in a particularly strong sense. 
Recursion theorists tend to like such functions, and computer scientists 
tend to consider such functions somewhat pathological. It is shown (Alton, 
1976) that such pathology is rampant: there is a great diversity of behavior 
among the collections of run times of different functions which do not 
possess optimal programs, where such diversity is gauged by certain alge- 
braic criteria which have computational significance. Roughly speaking, 
these algebraic criteria concern the ways in which various functions can be 
intermixed to satisfy requirements that certain functions can or cannot be 
computed more easily than certain other functions. 

It is in fact shown (Alton, 1976) that there are enough speedable 
functions so that they can be responsible for embedding every countable 
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par t ia l  o rde r  into the set o f  all poss ib le  complex i ty  classes with respec t  to 
an a rb i t ra ry  measure  (such as t ime).  Such divers i ty  thus inc ludes  all count-  
able  sets o f  i n c o m p a r a b l e  complex i ty  classes.  Suppose ,  for  instance,  tha t  
c o m p u t a b l e  funct ions  f =  q~i and  g = ~ j  are  respons ib le  for  making  the 
complex i ty  classes Cr and  C% se t - theore t ica l ly  i ncomparab l e .  This means  
that  any p r o g r a m  which  computes  f takes more  resource  on inf ini tely many  
inputs  than  the pa r t i cu l a r  p rog ram j which  computes  g, and  any p r o g r a m  
which  computes  g takes  more  resource  on infini tely many  inputs  than  the 
par t i c la r  p r o g r a m  i which  computes  f Thus f and  g are easy to compu te  
on very different  sets o f  inputs .  We therefore  see that  there  are enough  
speedab le  funct ions  to mode l  (encode  b y  indexing)  the  ways in which  
var ious  p r o g r a m s  relate  to one ano ther  with respect  to the pa t te rns  of  inputs  
on which those  p rog rams  compu te  rapid ly .  The  preva lence  (d i s t r ibu t ion)  
o f  uncon t ro l l ed  p r o g r a m  growth  among  these  funct ions  is unknown.  
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